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1. 

The presence in a work piece of material inhomogeneities, the occurrence of the
breakaway of built-up cutting tool edges, and chip breakage [1] may lead to rapid
transitions between cutting states. The requirement that a machine control system
follow and correct such departures necessitates the use of state identification
algorithms which are effective for short time intervals in non-stationary time series.
The methods of time–frequency analysis are of particular interest in this context.

These range from the short-time Fourier spectrum through the Wigner,
Wigner–Ville, Page, Choi–Williams and Cohen distribution [2, 3]. Extensions to
higher-order spectra are given in reference [4].

The identification of cutting states, associated with the orthogonal cutting of
stiff cylinders, was realized in reference [5] through an analysis of the behavior of
the singular values of a Toeplitz matrix, R, equation (5), of third order cumulants
of acceleration measurements. It was shown in references [5, 6] that the ratio,
R-ratio, of the dominant pairs of singular values of R for a lag of 100 differentiates
between light-cutting, medium-cutting, pre-chatter and chatter states. The
cumulant elements of R were estimated as the average of cumulants for one second
intervals over time series with durations of 20 to 60 s except for the chatter state
for which the duration of associated time series was limited to 3 s.

The detection of transitions between cutting states is predicated in the following
on the adaptation of the narrow moving window of the short-time Fourier
spectrum to the calculation of what could be termed short-time R-ratios. The
window length over which cumulants for one second intervals of data are averaged
was reduced from 20 to 60 s to 1 to 6 s. Test data was generated numerically
through concatenation of three trigonometric functions with random phase and
experimentally by concatenating orthogonal cutting data for light and medium
cutting and chatter. Transitions in the resulting time series were detected by all
windows of 1 to 6 s duration.

2.  

The experimental apparatus consists of a Hardinge CNC lathe, a specially
designed force dynamometer utilizing three Kisthler 9068 force transducers and
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its associated electronics, and a Hewlett Packard 3566A digital spectrum analyzer
for data acquisition and real-time analysis.

All experiments involved only right-handed orthogonal cutting. Kennametal
TPMR 322 positive rake tool inserts were employed and were supported by
Kennametal KT-GPR 123B tool holders. The tool holder-inserted combination
resulted in a rake angle of 5° and a clearance angle of 4°. Cylindrical work pieces
of 1020 steel were machined under a wide range of cutting conditions. Since all
work pieces were stubby, work piece modal characteristics did not affect the
turning dynamics. The sampling rate was 4096 Hz and the cutoff frequency was
1100 Hz. Record lengths were from 20 to 60 s except for chatter records, which
had a duration of 3 s.

3.  R-

The R matrix arises in connection with the determination of the coefficients, a(i),
in an auto-regressive process [4, 7]. A pth order AR process is described by

X(k)+ s
P

i=1

a(i)X(k− i)=W(k), (1)

where X(k), k=0, 21, 22, . . . is a real third order stationary random process.
Assume that W(k) is non-Gaussian, E(W(k))=0 and E(W3(k))0 b, where
E( )0 the expected value of ( ). Multiplying through equation (1) and summing
gives

cx
3 (−k, −l)+ s

P

i=1

a(i)cx
3 (i− k, i− l)= bd(k, l), (2)

where k, lq 0 and the third order cumulant cx
3 (t1, t2) is

cx
3 (t1, t2)= (1/2n) s

+n

k=−n

X(k)X(k+ t1)X(k+ t2). (3)

Letting k= l in equation (2) with k=0, . . . , P yields P+1 equations for the
P+1 unknowns a(i) and b [4, 7]. In matrix notation,

Ra= b, (4)

where

g(o, o) g(1, 1) · · · g(P, P)

g(−1, −1) g(0, 0) · · · g(P−1, P−1)
G
G

G

K

k

G
G

G

L

l

R= ···
···

···
; (5)

g(−P, −P) g(−P+1, −P+1) · · · g(o, o)

g(i, j)0 cx
3(i, j), a=[1, a(1), . . . , a(P)]T and b0 [b, o, . . . , o]T. In general R is a

non-symmetric Toeplitz matrix. In references [4, 7] the data set is segmented into
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K records of M samples each and cx
3,n (i, j) is computed for the n record. cx

3 (i, j) is
then computed as an average of cx

3,n (i, j) over all K records. A sufficient but not
necessary condition for the representation in equation (4) to exist is the symmetry
and positive definiteness of R. A discussion of this and related conditions is given
in reference [4].

4.  -

The R-ratio is defined in reference [5] as the ratio of the mean of the largest pair
of singular values [8] to the mean of the second largest pair of singular values of
the R matrix, equation (5). The cumulants in R were computed [5] as an average
over one second intervals of stationary tool acceleration time series of from 20 to
60 s duration; K=20, . . . , 60.

Figure 1. Data set s−1, 2·5 mm: (a) singular values versus lag; (b) R-ratio versus lag.
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Figure 2. R-ratio versus time, s, for f(t) with 1 s window.

Figure 3. R-ratio versus time, s, for g(t) with 1 s window. (a) unaveraged; (b) moving average.
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A typical result [5] is shown in Figure 1 for data sets s−1 with turning
frequency=460 r.p.m., rake angle=5°, surface speed=90 m/min, feed
rate=0·007 in/rev, resampling rate=1024 Hz, frequency cut-off=1100 Hz, and
depth of cut=2·5 mm. For this case of light cutting, singular values of R, equation
(5), and R-ratio versus delay are shown in Figures 1(a) and (b) , respectively. Four
dominant singular values of R occur in two pairs which approach each other as
the lag increases. The R-ratio 21 for lag e50, which was found to be
characteristic of light cutting. It was shown in reference [5] that the R-ratio
evaluated for lag=100 approximates one for light cutting, two or more for chatter
and near chatter states and takes intermediate values for intermediate states,
increasing monotonically from one to two as chatter is approached.

5.   -

A numerically generated test function, f(t), ws formed through the
concatenation of 15 s intervals of the phase-coupled trigonometric functions fi (t),
equations (6)–(8), where the fi are mutually independent and uniformly
distributed over [0, 2p]:

f1(t)=0·9 cos (2p · 90t+f1)+ cos (2p · 100t+f2)

+0·2 cos (2p · 100t+f1 +f2), (6)

Figure 4. R-ratio versus time, s, for g(t) with 2 s window: (a) unaveraged; (b) moving average.
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Figure 5. R-ratio versus time, s, for g(t) with 4 s window: (a) unaveraged; (b) moving average.

f2(t)= cos (2p · 90t+f1)+ cos (2p · 100t+f2)

+ cos (2p · 190t+f1 +f2)+0·5 cos (2p · 100t+f1)

+0·5 cos (2p · 110t+f3)

+0·6 cos (2p · 210t+f1 +f3), (7)

f3(t)= cos (2p · 100t+f1)+ cos (2p · 100t+f2)

+0·2 cos (2p · 200t+f1 +f2), (8)

f1(t) was sampled at 1024 Hz. R-ratios, computed for 100 lags, averaging
cumulants for one second intervals over 0E tE 15 s, were 1·01, 1·34 and 2·00 for
fi (t), i=1, 3, respectively.

Setting both the window length and the interval length over which the R-ratio
is computed equal to 1 s and finding the R-ratio over the window for each second
of f(t) gives the R-ratio versus time plot shown in Figure 2. The location of
discontinuities between the concatenated fi (t) functions is correctly found and
values of the R-ratios at interior points are in good agreement with those found
for the individual fi (t) through averaging cumulants for 1 s intervals over
0E tE 15 s. Apparently, noise associated with the random fi is suppressed by the
singular value decomposition.

Calculations identical to the foregoing were carried out for the concatenation,
g(t), of three times series, gi (t), i=1, 3, of cutting tool accelerations associated
with the orthogonal cutting of stiff metal cylinders. For gi (t), the rake angle=5°,
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feed rate=0·007 in/rev, surface speed=90 m/min, resampling rate=1024 Hz
and frequency cutoff=1100 Hz. g1(t) and g2(t) of 15 s duration are associated
with light and medium cutting, respectively. g3(t), of 3 s duration is associated with
chatter. The R-ratios computed for gi (t), i=1, 3, by long time averaging of
R-ratios of 1 s intervals over time series of 20 to 40 s duration were 1·0, 1·5, 2·2,
respectively.

The R-ratio, computed over the 1 s interval, versus time for a 1 s window, no
averaging, is showing in Figure 3(a). The R-ratio for the nth window is assigned
an abscissa of n. A moving average of three consecutive values of the R-ratio from
Figure 3(a) is shown in Figure 3(b). The moving average is assigned an abscissa
corresponding to that of the central point of three averaged values. Three seconds
of chatter data have been continued into a 10 s interval through repetition to
simplify calculations based on large windows for tq 30. Transitions at 15 s and
30 s between light, medium and heavy cutting are clearly indicated both for the
averaged and unaveraged cases. The identification of the chatter state, R-ratio
22·0, is made at t=31 s in Figure 3(a) and t=33 s in Figure 3(b).

The results of a calculation identical to the foregoing, except that its basis is a
2 s window, are shown in Figures 4(a) and (b). The R-ratio for the nth two second
window is assigned an abscissa of n. This numbering convention shifts the
resulting R-ratio versus time plot one second to the left. Values of the R-ratio
22·0, indicating chatter, occur for te 30 s for the unaveraged case, Figure 4(a) ,
and for te 31 s for the averaged cases, Figure 4(b). Transitions between light and
medium cutting and chatter are evident at 14 s and 29 s, respectively.

Figure 6. R-ratio versus time, s, for g(t) with 6 s window: (a) unaveraged; (b) moving average.
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Results for the 4 s window are shown in Figures 5(a) and (b). The R-ratio of
the nth four second window is assigned an abscissa n producing a shift in the
resulting R-ratio versus time plot of three seconds to the left. As before, the onset
of the chatter state and the transition between light and medium cutting are
identified.

Solutions for the 6 s window are shown in Figures 6(a) and (b). In this case the
R-ratio versus time plot is shifted 5 s to the left. The onset of chatter and
transitions are identified. Considerable smoothing of the time series is evident.
Long time averages over each of the concatenated time series are approximated
for windows in positions which only include points of a particular time series.

6. 

The R-ratio was defined in reference [5] and, for a lag=100, shown to
approximate one for light cutting, two or more for chatter or near chatter and
intermediate values for intermediate states, increasing from one to two as chatter
is approached. Third order cumulants, forming the elements of the R matrix were
approximated by averages over stationary time series of from 20 s to 60 s duration.

The present study demonstrates that the short-time R-ratio effectively
characterizes non-stationary cutting time series. Cumulants were approximated by
averages over moving windows 1 s to 6 s in width. The resulting short time
R-ratios detected the transitions between as well as characterized the cutting state.
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